Transformations and Angle Relationships

Lesson 22

Math

Unit 3

8th Grade

Lesson 22 of 22

Objective


Define and use the angle-angle criterion for similar triangles.

Common Core Standards


Core Standards

  • 8.G.A.5 — Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.

Foundational Standards

  • 7.G.A.1
  • 7.G.A.2

Criteria for Success


  1. Use the interior angle sum theorem of a triangle to find a third angle; know that if two angles of a triangle are known, then the third side can always be found.
  2. Know that if two triangles have two pairs of congruent angles, then the third pair is also congruent.
  3. Understand that two triangles with two pairs of congruent angles will always be similar because one can be mapped to the other by a series of transformations (Angle-angle criterion).

Tips for Teachers


In investigating the angle-angle criterion for similar triangles, students draw on concepts learned from throughout the unit, including rigid transformations, dilations, and the interior angle sum theorem. This lesson is a good opportunity to review these concepts from earlier in the unit. 

Fishtank Plus

Unlock features to optimize your prep time, plan engaging lessons, and monitor student progress.

Anchor Problems

25-30 minutes


Problem 1

Two triangles share two pairs of equal angles, as marked in the diagram. 

Mari thinks that $${\angle x}$$ and $${\angle y}$$ will always be equal, regardless of what the other angle measurements are. Do you agree with Mari’s reasoning? Why or why not?

Guiding Questions

Create a free account or sign in to access the Guiding Questions for this Anchor Problem.

Student Response

Upgrade to Fishtank Plus to view Sample Response.

Problem 2

Triangle $${{{ABC}}}$$ and triangle $${{AB'C'}}$$ share a common angle, $${\angle A}$$, and $${\overline{BC}}$$ is parallel to $${\overline{B'C'}}$$.

a.   Is triangle $${{{ABC}}}$$ similar to triangle $${{AB'C'}}$$? Explain how you know. 

b.   If the measure of $${\angle B}$$ is $${40^{\circ}}$$, then what is the measure of $${\angle C'}$$? Explain how you know. 

c.   Draw a line in the diagram above that creates a new triangle that is similar to triangle $${{{ABC}}}$$.

Guiding Questions

Create a free account or sign in to access the Guiding Questions for this Anchor Problem.

Student Response

Upgrade to Fishtank Plus to view Sample Response.

Problem 3

Triangles $${ABC}$$ and $${PQR}$$ below share two pairs of congruent angles as marked:

a.   Explain, using dilations, translations, reflections, and/or rotations, why $$\triangle {PQR}$$ is similar to $$\triangle {ABC}$$.

b.   Are angles $$C$$ and $$R$$ congruent? Explain your reasoning.

c.   Suppose $${{DEF}}$$ and $${{KLM}}$$ are two triangles with $${m(\angle D)=m(\angle K )}$$ and $${m(\angle E)=m(\angle L )}$$. Are triangles $${{DEF}}$$ and $${{KLM}}$$ similar?

Guiding Questions

Create a free account or sign in to access the Guiding Questions for this Anchor Problem.

Student Response

Upgrade to Fishtank Plus to view Sample Response.

References

Illustrative Mathematics Similar Triangles II

Similar Triangles II, accessed on Oct. 13, 2017, 4:25 p.m., is licensed by Illustrative Mathematics under either the CC BY 4.0 or CC BY-NC-SA 4.0. For further information, contact Illustrative Mathematics.

Modified by Fishtank Learning, Inc.

Problem Set

15-20 minutes


Give your students more opportunities to practice the skills in this lesson with a downloadable problem set aligned to the daily objective.

Target Task

5-10 minutes


Triangle $${{HIJ}}$$ and triangle $${{PQR}}$$ are shown below.

Are triangles $${{HIJ}}$$ and $${{PQR}}$$ similar? Justify your answer.

Student Response

Upgrade to Fishtank Plus to view Sample Response.

Additional Practice


The following resources include problems and activities aligned to the objective of the lesson that can be used for additional practice or to create your own problem set.

Lesson Map

A7CB09C2-D12F-4F55-80DB-37298FF0A765

Topic A: Congruence and Rigid Transformations

Topic B: Similarity and Dilations

Topic C: Angle Relationships

Request a Demo

See all of the features of Fishtank in action and begin the conversation about adoption.

Learn more about Fishtank Learning School Adoption.

Contact Information

School Information

What courses are you interested in?

ELA

Math

Are you interested in onboarding professional learning for your teachers and instructional leaders?

Yes

No

Any other information you would like to provide about your school?

We Handle Materials So You Can Focus on Students

We Handle Materials So You Can Focus on Students

We've got you covered with rigorous, relevant, and adaptable math lesson plans for free