Exponents and Exponential Functions

Lesson 22

Math

Unit 6

9th Grade

Lesson 22 of 22

Objective


Solve exponential growth and exponential decay application problems.

Common Core Standards


Core Standards

  • F.IF.C.8.B — Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)t, y = (0.97)t, y = (1.01 12t, y = (1.2)t/10, and classify them as representing exponential growth or decay.
  • F.LE.A.1 — Distinguish between situations that can be modeled with linear functions and with exponential functions.
  • F.LE.A.2 — Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

Foundational Standards

  • 8.F.B.4

Criteria for Success


  1. Identify when a situation has a constant rate of change, an increasing rate of change, or a decreasing rate of change. 
  2. Write exponential growth and decay functions for real-world situations.
  3. Interpret exponential functions in context of their situations.

Tips for Teachers


  • In regard to pacing, this lesson may be extended over two days, especially if the Desmos modeling activity “iPhone 6s Opening Weekend Sales,” included in the Problem Set Guidance, is used. 
  • This lesson only includes one Anchor Problem in order to allow for adequate time for independent practice or other targeted instruction based on the needs of your classroom. 
  • The Anchor Problem and the Target Task both address exponential growth; ensure that students also encounter problems that target exponential decay.
Fishtank Plus

Unlock features to optimize your prep time, plan engaging lessons, and monitor student progress.

Anchor Problems

25-30 minutes


Leo leaves his house one morning and notices a small plant growing in the yard that he has never noticed before. Out of curiosity, he grabs a ruler and measures it; the plant is 3 cm tall. Exactly one week later, Leo notices the plant has grown quite a bit, so he measures it again; now it is 9 cm tall. And one week after that, it measures 27 cm.

Leo knows that it is unlikely that the plant will continue to triple in height each week indefinitely, but he starts to wonder about the height of the plant before he started to measure it and how he could model its growth mathematically. Suppose that the plant follows a rule, “triples in height each week.”

  1. Read the information contained in the table to understand what Leo has written so far, and then complete the table. Write any heights that are less than 1 cm as fractions.
Week $${-4}$$ $${-3}$$ $${-2}$$ $${-1 }$$ $$0$$ $$1$$ $$2$$ $$3$$ $$4$$ $$5$$ $$w$$
Height (cm)           $$3$$ $$9$$ $$27$$      
Height Expression             $$3^2$$ $$3^3$$      
  1. Express the height of the plant, $$h$$, as a function of the week it was measured, $$w$$.
  2. Explain in words the meaning of $$h(0)$$
  3. Use your function to find the height of the plant on Week {-4}. Write this value as a fraction. Does the result of the function agree with what you wrote in the table?

Guiding Questions

Create a free account or sign in to access the Guiding Questions for this Anchor Problem.

References

Illustrative Mathematics Predicting the PastPart A

Predicting the Past, accessed on May 16, 2018, 4:51 p.m., is licensed by Illustrative Mathematics under either the CC BY 4.0 or CC BY-NC-SA 4.0. For further information, contact Illustrative Mathematics.

Problem Set

15-20 minutes


Give your students more opportunities to practice the skills in this lesson with a downloadable problem set aligned to the daily objective.

Target Task

5-10 minutes


Mr. Miller starts working for a technology company this year. His salary the first year is $40,000. According to the company’s employee handbook, each following year Mr. Miller works at the company, he is eligible for a raise equal to 2–5% of his previous year’s salary. 

Mr. Miller calculates the range of his raise on his first year’s salary. He adds that amount as his raise for each following year. Mr. Miller thinks that:

  • in his second year working at the company, he would be earning a salary between $40,800 and $42,000, and 
  • in his third year, he would be earning a salary between $41,600 and $44,000.
  1. Based on this reasoning, what salary range would Mr. Miller expect to earn in his tenth year at the company?
  2. Mr. Miller’s reasoning is incorrect. Show with diagrams, equations, expressions, or words why his reasoning is incorrect.

References

Smarter Balanced Assessment Consortium: Item and Task Specifications MAT.HS.ER.4.00FLE.E.566

MAT.HS.ER.4.00FLE.E.566 from Development and Design: Item and Task Specifications made available by Smarter Balanced Assessment Consortium.  © The Regents of the University of California – Smarter Balanced Assessment Consortium. Accessed May 18, 2018, 3:31 p.m..

Additional Practice


The following resources include problems and activities aligned to the objective of the lesson that can be used for additional practice or to create your own problem set.

Lesson Map

A7CB09C2-D12F-4F55-80DB-37298FF0A765

Topic A: Exponent Rules, Expressions, and Radicals

Topic B: Arithmetic and Geometric Sequences

Topic C: Exponential Growth and Decay

Request a Demo

See all of the features of Fishtank in action and begin the conversation about adoption.

Learn more about Fishtank Learning School Adoption.

Contact Information

School Information

What courses are you interested in?

ELA

Math

Are you interested in onboarding professional learning for your teachers and instructional leaders?

Yes

No

Any other information you would like to provide about your school?

We Handle Materials So You Can Focus on Students

We Handle Materials So You Can Focus on Students

We've got you covered with rigorous, relevant, and adaptable math lesson plans for free