Exponents and Exponential Functions

Lesson 6

Math

Unit 6

9th Grade

Lesson 6 of 22

Objective


Define rational exponents and convert between rational exponents and roots.

Common Core Standards


Core Standards

  • N.RN.A.1 — Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 51/3 to be the cube root of 5 because we want (51/3)³ = 5(1/3)³ to hold, so (51/3)³ must equal 5.
  • N.RN.A.2 — Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Foundational Standards

  • 8.EE.A.1
  • 8.EE.A.2
  • 8.NS.A.1

Criteria for Success


  1. Understand a rational exponent as a base with a rational exponent as a power, including either a fraction or a decimal. 
  2. Write rational exponents using a radical, where the denominator of the fractional exponent defines the root and the numerator of the fractional exponent defines the power of the base. 
  3. Write radicals as exponential expressions with rational exponents.
  4. Extend the properties of integer exponents to rational exponents. 
Fishtank Plus

Unlock features to optimize your prep time, plan engaging lessons, and monitor student progress.

Anchor Problems

25-30 minutes


Problem 1

Below is an equation that is not true.

$${{{{{10}0}^{1\over2}}}=50}$$

a.   Why is the statement incorrect? What do you think the correct value of $${{{{10}0}^{1\over2}}}$$ is?

b.   Consider the following pattern. Where does $${{{{10}0}^{1\over2}}}$$ fit in?

$${{{10}0}^3=1,000,000}$$

$${{{10}0}^2={10},000}$$

$${{{10}0}^1={{10}0}}$$

$${{{10}0}^0=1}$$

c.   Consider rewriting the base $${{10}0}$$ as a power of $${10}$$. How does this shed light on the value of $${{{{10}0}^{1\over2}}}$$?

$${{{{10}0}^{1\over2}}}=(\square)^{1\over2}$$

 

d.   Try out these other rational exponents:

$${25^{1\over2}}$$                    $${144^{1\over2}}$$                   $${8^{1\over3}}$$

Guiding Questions

Create a free account or sign in to access the Guiding Questions for this Anchor Problem.

References

Divisible By 3 Mistakes to the Half Power

Mistakes to the Half Power is made available by Andrew Stadel on Divisible by 3 under the CC BY-NC-SA 3.0 license. Accessed May 17, 2018, 10:54 a.m..

Modified by Fishtank Learning, Inc.

Problem 2

All of the following equations are true.

$${\sqrt{x}=x^{1\over2}}$$                $${\sqrt[3]{x}=x^{1\over3}}$$                $${(\sqrt{x})^2=x}$$               $${x^{2\over3}=\sqrt[3]{x^2}}$$

Determine a general statement to represent the relationship between a radical and its exponential expression.

Guiding Questions

Create a free account or sign in to access the Guiding Questions for this Anchor Problem.

Problem 3

Write the radicals in exponential form and write the exponentials in radical form. 

a.   $${5^{6\over5}}$$

b.   $${4^{-{2\over3}}}$$

c.   $${2n^{2\over5}}$$

d.   $${\sqrt[3]{7^2}}$$

e.   $${1\over{\sqrt[3]{5}}}$$

f.   $${\sqrt{(3x)^5}}$$

Guiding Questions

Create a free account or sign in to access the Guiding Questions for this Anchor Problem.

Problem Set

15-20 minutes


Give your students more opportunities to practice the skills in this lesson with a downloadable problem set aligned to the daily objective.

Target Task

5-10 minutes


Henry explains why $${4^{3\over2}=8}$$:

"I know that $${4^3}$$ is $${{64}}$$ and the square root of $${{64}}$$ is $$8$$."

Here is Henrietta’s explanation for why $${4^{3\over2}=8}$$:

"I know that $${\sqrt4=2}$$ and the cube of $$2$$ is $$8$$. "

 

  1. Are Henry and Henrietta correct? Explain. 
  2. Calculate $$4^{5\over2}$$ and $$27^{2\over3}$$ using Henry’s or Henrietta’s strategy. 
  3. Use both Henry and Henrietta’s reasoning to express $${x^{m\over n}}$$ using radicals (here $$m$$ and $$n$$ are positive integers and we assume $${x>0}$$).

References

Illustrative Mathematics Evaluating Exponential Expressions

Evaluating Exponential Expressions, accessed on May 18, 2018, 12:33 p.m., is licensed by Illustrative Mathematics under either the CC BY 4.0 or CC BY-NC-SA 4.0. For further information, contact Illustrative Mathematics.

Additional Practice


The following resources include problems and activities aligned to the objective of the lesson that can be used for additional practice or to create your own problem set.

Next

Write equivalent radical and rational exponent expressions. Identify quantities as rational or irrational.

Lesson 7
icon/arrow/right/large

Lesson Map

A7CB09C2-D12F-4F55-80DB-37298FF0A765

Topic A: Exponent Rules, Expressions, and Radicals

Topic B: Arithmetic and Geometric Sequences

Topic C: Exponential Growth and Decay

Request a Demo

See all of the features of Fishtank in action and begin the conversation about adoption.

Learn more about Fishtank Learning School Adoption.

Contact Information

School Information

What courses are you interested in?

ELA

Math

Are you interested in onboarding professional learning for your teachers and instructional leaders?

Yes

No

Any other information you would like to provide about your school?

We Handle Materials So You Can Focus on Students

We Handle Materials So You Can Focus on Students

We've got you covered with rigorous, relevant, and adaptable math lesson plans for free