Limits and Continuity

Lesson 7

Math

Unit 9

11th Grade

Lesson 7 of 9

Objective


State and evaluate limits algebraically.

Criteria for Success


  1. Identify the appropriate equations to use from a piecewise function to evaluate the left-hand limit, right-hand limit, and limit of the boundaries of a piecewise function. 
  2. Distinguish finding the value of a function at an $${{x-}}$$value from finding the limit as you approach that $${{x-}}$$value. 
  3. Verify algebraic reasoning graphically.

Tips for Teachers


This lesson is aligned to the Learning Objectives and Essential Knowledge described in the College Board's AP Calculus AB and AP Calculus BC Course and Exam Description:

LO1.1A(b): EK1.1A1, EK1.1A2, EK1.1A3

LO1.1B: EK1.1B1

LO1.2A: EK1.2A1

LO2.1A, LO2.1B (approaching)

Fishtank Plus

Unlock features to optimize your prep time, plan engaging lessons, and monitor student progress.

Anchor Problems

25-30 minutes


Problem 1

Below is a piecewise function.

$${f(x)\left\{\begin{matrix}-x-2, \space \space -2\leq x <0 \\3x-2, \space \space \space 0\leq x <1 \\ x-3, \space \space \space 1\leq x \leq 4 \end{matrix}\right.}$$

Calculate the following:

$${\lim_{x\rightarrow 0}f(x)=}$$

$${\lim_{x\rightarrow 1}f(x)=}$$

How can you tell if the function is continuous without graphing?

Guiding Questions

Create a free account or sign in to access the Guiding Questions for this Anchor Problem.

Problem 2

Use $${f(x)={{x^2+6x+8}\over{x+2}}}$$ to evaluate:

a.    $${\lim_{x\rightarrow -2} f(x)=}$$

b.  $${\lim_{x\rightarrow 2} f(x)=}$$

c.  $${f(-2)=}$$

d.  $${f(2)=}$$

Guiding Questions

Create a free account or sign in to access the Guiding Questions for this Anchor Problem.

Target Task

5-10 minutes


Problem 1

Use $${f(x)={{x^2-7x+6}\over{x-6}}}$$  to evaluate:

 

a.  $${\lim_{x\rightarrow6}f(x)=}$$

b.  $${\lim_{x\rightarrow-1}f(x)=}$$

c.  $${\lim_{x\rightarrow0}f(x)=}$$

d.  $${f(6)=}$$

e.  $${f(-1)=}$$

f.  $${f(0)=}$$

 

Problem 2

Use $$g(x)=\left\{\begin{matrix} x+2 & x<-1 \\ x^2 & -1 \leq x <2\\ -2 x + 8 & 2 < x \leq 4 \end{matrix}\right.$$  to evaluate:

 

a.  $${\lim_{x\rightarrow-1} g(x)=}$$

b.  $${\lim_{x\rightarrow2}g(x)=}$$

c.  $${g(2)=}$$

d.  $${g(4)=}$$

e.  $${g(-1)=}$$

f.  $${\lim_{x\rightarrow-\infty}g(x)=}$$

 

Is this function $$g$$ continuous over the interval $${[0, 4]}$$? How do you know?

Next

Evaluate infinite limits and limits at infinity.

Lesson 8
icon/arrow/right/large

Request a Demo

See all of the features of Fishtank in action and begin the conversation about adoption.

Learn more about Fishtank Learning School Adoption.

Contact Information

School Information

What courses are you interested in?

ELA

Math

Are you interested in onboarding professional learning for your teachers and instructional leaders?

Yes

No

Any other information you would like to provide about your school?

We Handle Materials So You Can Focus on Students

We Handle Materials So You Can Focus on Students

We've got you covered with rigorous, relevant, and adaptable math lesson plans for free