Polynomials

Lesson 2

Math

Unit 3

11th Grade

Lesson 2 of 14

Objective


Identify features of polynomial functions including end behavior, intervals where the function is positive or negative, and domain and range of function.

Common Core Standards


Core Standards

  • F.BF.B.3 — Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
  • F.IF.B.4 — For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Modeling is best interpreted not as a collection of isolated topics but in relation to other standards. Making mathematical models is a Standard for Mathematical Practice, and specific modeling standards appear throughout the high school standards indicated by a star symbol (★). The star symbol sometimes appears on the heading for a group of standards; in that case, it should be understood to apply to all standards in that group.
  • F.IF.B.6 — Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. Modeling is best interpreted not as a collection of isolated topics but in relation to other standards. Making mathematical models is a Standard for Mathematical Practice, and specific modeling standards appear throughout the high school standards indicated by a star symbol (★). The star symbol sometimes appears on the heading for a group of standards; in that case, it should be understood to apply to all standards in that group.
  • F.LE.A.3 — Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

Foundational Standards

  • F.IF.B.4

Criteria for Success


  1. Describe end behavior as the value of y the function approaches as the value of $$x$$ either increases to infinity or decreases to negative infinity. 
  2. Describe how the shape of the function, domain of the function, and end behavior change based on whether the degree of the function is odd or even. 
  3. Describe the effect the leading coefficient has on the shape of the function and the end behavior of the function. 
  4. Explain that when all coefficients and terms are unchanged except the degree of the polynomial, the rate of change over a fixed interval will increase with an increasing degree.
Fishtank Plus

Unlock features to optimize your prep time, plan engaging lessons, and monitor student progress.

Anchor Problems

25-30 minutes


Problem 1

What do all of these functions have in common? What's different?

$${h(x)=x^2}$$ $${k(x)=x^4}$$ $${l(x)=x^6}$$ $${r(x)=x^8}$$

 

What do all of these functions have in common? What's different?

$${t(x)=x}$$ $${j(x)=x^3}$$ $${m(x)=x^5}$$ $${w(x)=x^7}$$

 

Guiding Questions

Create a free account or sign in to access the Guiding Questions for this Anchor Problem.

Problem 2

Write a function and draw a sketch that meets the constraints below. 

  • Your function tends toward negative infinity when $$x$$ is very small and tends toward positive infinity when $$x$$ is very large. 
  • Your function has the marked points as $$x$$-intercepts.

Guiding Questions

Create a free account or sign in to access the Guiding Questions for this Anchor Problem.

References

Target Task

5-10 minutes


Match the graph with the equation and describe the end behavior.

1.      a.     $${y=\frac{1}{2}x^2}$$
2.      b.     $${y=x^3-8}$$
3.      c.     $${y=-x^4-x^3+4x+2}$$
4.      d.     $${-3x^3}$$
5.       e.     $${3x^5-x^3+4x+2}$$

 

References

EngageNY Mathematics Algebra II > Module 1 > Topic B > Lesson 15Exit Ticket

Algebra II > Module 1 > Topic B > Lesson 15 of the New York State Common Core Mathematics Curriculum from EngageNY and Great Minds. © 2015 Great Minds. Licensed by EngageNY of the New York State Education Department under the CC BY-NC-SA 3.0 US license. Accessed Dec. 2, 2016, 5:15 p.m..

Modified by Fishtank Learning, Inc.

Additional Practice


The following resources include problems and activities aligned to the objective of the lesson that can be used for additional practice or to create your own problem set.

  • Include problems where an “always sometimes never” statement is given, such as “the end behavior is the same for even functions.”

Next

Match and compare equations and graphs of polynomials, and identify transformations.

Lesson 3
icon/arrow/right/large

Lesson Map

A7CB09C2-D12F-4F55-80DB-37298FF0A765

Topic A: Polynomial Features and Graphs

Topic B: Operations with Polynomials

Topic C: Polynomial Extensions

Request a Demo

See all of the features of Fishtank in action and begin the conversation about adoption.

Learn more about Fishtank Learning School Adoption.

Contact Information

School Information

What courses are you interested in?

ELA

Math

Are you interested in onboarding professional learning for your teachers and instructional leaders?

Yes

No

Any other information you would like to provide about your school?

We Handle Materials So You Can Focus on Students

We Handle Materials So You Can Focus on Students

We've got you covered with rigorous, relevant, and adaptable math lesson plans for free