Quadratics

Lesson 11

Math

Unit 2

11th Grade

Lesson 11 of 11

Objective


Identify solutions to a system of a quadratic function and a linear function graphically and algebraically.

Common Core Standards


Core Standards

  • A.REI.A.1 — Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
  • A.REI.C.7 — Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = -3x and the circle x² + y² = 3.
  • A.REI.D.11 — Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. Modeling is best interpreted not as a collection of isolated topics but in relation to other standards. Making mathematical models is a Standard for Mathematical Practice, and specific modeling standards appear throughout the high school standards indicated by a star symbol (★). The star symbol sometimes appears on the heading for a group of standards; in that case, it should be understood to apply to all standards in that group.

Foundational Standards

  • A.REI.D.10

Criteria for Success


  1. Identify solutions to a system of functions graphically by noticing the number of times the functions cross. 
  2. Use the principal that a solution to a system of functions is when the functions are equal to each other to solve a system of functions. 
  3. Identify extraneous solutions by plugging a value back into the equation and noticing that the equation does not make a true statement.
  4. Use the vocabulary term “tangent line” to describe the line that intersects a parabola in only one point.

Tips for Teachers


This standard is also taught in Algebra 1. Because of the importance for AP Calculus, a review is included in this unit, which supports the next lesson. 

Fishtank Plus

Unlock features to optimize your prep time, plan engaging lessons, and monitor student progress.

Anchor Problems

25-30 minutes


Problem 1

How many solutions are in each of the following systems?

$${{{f(x)={1\over2}x^2-2x+4}}}$$

$${g(x)={1\over2}x-1}$$

$${{{f(x)={1\over2}x^2-2x+4}}}$$

$${r(x)=-x+8}$$

$${{{f(x)={1\over2}x^2-2x+4}}}$$

$${t(x)=2}$$

Verify the number of solutions algebraically.

Guiding Questions

Create a free account or sign in to access the Guiding Questions for this Anchor Problem.

Problem 2

The figure shows graphs of a linear and a quadratic function. 
The equation that models the quadratic function is $${ y=-(x+2)^2+17}$$.

  1. What are the coordinates of point Q? 
  2. What are the coordinates of point P? 

Guiding Questions

Create a free account or sign in to access the Guiding Questions for this Anchor Problem.

References

Illustrative Mathematics A Linear and Quadratic System

A Linear and Quadratic System, accessed on Aug. 18, 2017, 4:11 p.m., is licensed by Illustrative Mathematics under either the CC BY 4.0 or CC BY-NC-SA 4.0. For further information, contact Illustrative Mathematics.

Target Task

5-10 minutes


Calculate the solutions to the following system algebraically. Identify any extraneous solutions.

$${f(x)=x^2-2x+3}$$

$${g(x)=-x+5}$$

Additional Practice


The following resources include problems and activities aligned to the objective of the lesson that can be used for additional practice or to create your own problem set.

  • Include problems where students need to find the solution on their graphing calculators and then verify the solution algebraically. 
  • Include problems where students need to identify the number of solutions as well as the exact solutions of the system of functions. 
  • Include problems where students are given a quadratic and linear system that has two solutions and they are asked to transform the quadratic such that there are one solution and no solutions to the system. 
  • Include problems where students need to find the solution to a system of two quadratic equations. Do this graphically and algebraically. 
  • Inside Mathematics Performance Assessment Tasks Grades 3-High School Performance Assessment Taskshigh school algebra: quadratic (2009)

Lesson Map

A7CB09C2-D12F-4F55-80DB-37298FF0A765

Topic A: Features of Quadratic Functions

Topic B: Imaginary Solutions and Operating with Complex Numbers

Topic C: Applications, Systems, and Inverse with Quadratics

Request a Demo

See all of the features of Fishtank in action and begin the conversation about adoption.

Learn more about Fishtank Learning School Adoption.

Contact Information

School Information

What courses are you interested in?

ELA

Math

Are you interested in onboarding professional learning for your teachers and instructional leaders?

Yes

No

Any other information you would like to provide about your school?

We Handle Materials So You Can Focus on Students

We Handle Materials So You Can Focus on Students

We've got you covered with rigorous, relevant, and adaptable math lesson plans for free