Curriculum / Math / 10th Grade / Unit 7: Circles / Lesson 11
Math
Unit 7
10th Grade
Lesson 11 of 14
Jump To
Lesson Notes
There was an error generating your document. Please refresh the page and try again.
Generating your document. This may take a few seconds.
Are you sure you want to delete this note? This action cannot be undone.
Define, describe, and calculate arc length.
The core standards covered in this lesson
G.C.B.5 — Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.
The foundational standards covered in this lesson
7.G.B.4 — Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.
7.G.B.5 — Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.
The essential concepts students need to demonstrate or understand to achieve the lesson objective
Suggestions for teachers to help them teach this lesson
Unlock features to optimize your prep time, plan engaging lessons, and monitor student progress.
Problems designed to teach key points of the lesson and guiding questions to help draw out student understanding
25-30 minutes
Which is the longer route?
Rotonda West, FL by Dan Meyer is made available on 101Questions under the CC BY 3.0 license. Accessed Sept. 19, 2018, 2:16 p.m..
What is the length of $$\widehat{BC}$$ in circle $$A$$?
A task that represents the peak thinking of the lesson - mastery will indicate whether or not objective was achieved
5-10 minutes
Below is circle $$A$$, with radius $$\overline{AB}$$ measuring $$3$$ centimeters.
The following resources include problems and activities aligned to the objective of the lesson that can be used for additional practice or to create your own problem set.
Next
Describe the proportional relationship between arc length and the radius of a circle. Convert between degrees and radians to write the arc measure in radians.
Topic A: Equations of Circles
Derive the equation of a circle using the Pythagorean Theorem where the center of the circle is at the origin.
Standards
G.GPE.A.1G.GPE.B.4
Given a circle with a center translated from the origin, write the equation of the circle and describe its features.
G.C.A.1G.CO.A.5G.GPE.A.1
Write an equation for a circle in standard form by completing the square. Describe the transformations of a circle.
G.CO.A.5G.GPE.A.1
Create a free account to access thousands of lesson plans.
Already have an account? Sign In
Topic B: Angle and Segment Relationships in Inscribed and Circumscribed Figures
Define a chord to derive the Chord Central Angles Conjecture and Thales’ Theorem.
G.C.A.2
Describe the relationship between inscribed and central angles in terms of their intercepted arc.
Determine the angle and length relationships between intersecting chords.
Prove properties of angles in a quadrilateral inscribed in a circle.
G.C.A.3
Define and determine properties of tangents and secants of circles to solve problems with inscribed and circumscribed triangles.
G.C.A.2G.C.A.3
Construct tangent lines to a circle to define and describe the circumscribed angle.
G.C.A.2G.C.A.4
Use angle and side length relationships with chords, tangents, inscribed angles, and circumscribed angles to solve problems.
Topic C: Arc Length, Radians, and Sector Area
G.C.B.5
Calculate the sector area of a circle. Identify relationships between sector area, arc angle, and radius.
Use sector area of circles to calculate the composite area of figures.
G.C.B.5N.Q.A.2N.Q.A.3
See all of the features of Fishtank in action and begin the conversation about adoption.
Learn more about Fishtank Learning School Adoption.
Yes
No
We've got you covered with rigorous, relevant, and adaptable math lesson plans for free