Multi-Digit and Fraction Computation

Lesson 17

Math

Unit 3

6th Grade

Lesson 17 of 17

Objective


Solve mathematical and real-world problems using the greatest common factor and least common multiple.

Common Core Standards


Core Standards

  • 6.NS.B.4 — Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12. Use the distributive property to express a sum of two whole numbers 1—100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express 36 + 8 as 4 (9 + 2).

Foundational Standards

  • 4.OA.B.4

Criteria for Success


  1. Find two numbers when given information about them, including their greatest common factor and least common multiple.
  2. Express a sum of two whole numbers with a common factor as a multiple of a sum of two relatively prime numbers. For example, express 36 + 8 as 4(9 + 2).
  3. Determine if a problem can be solved by finding the greatest common factor or the least common multiple. 
  4. Solve real-world problems that involve finding the greatest common factor or the least common multiple.
Fishtank Plus

Unlock features to optimize your prep time, plan engaging lessons, and monitor student progress.

Anchor Problems

25-30 minutes


Problem 1

Two numbers can be described with the information below:

  • Both numbers are less than 20.
  • The greatest common factor of the two numbers is 2.
  • The least common multiple of the two numbers is 36.

What are the two numbers?

Guiding Questions

Create a free account or sign in to access the Guiding Questions for this Anchor Problem.

Student Response

Upgrade to Fishtank Plus to view Sample Response.

Problem 2

Jason is preparing bundles of markers and pencils for a class activity. He wants to make the greatest number of bundles that he can, with the same number of markers and pencils in each bundle. Jason has 15 markers and 35 pencils. He writes the following equation to help him make sense of his supplies:

$${15+35=5(3+7)}$$

a.   What does Jason’s equation tell him about how many bundles he can make and how many markers and pencils are in each bundle?

b.   Mai, in another class, is also preparing bundles of markers and pencils. She has 24 markers and 36 pencils. She writes an equation and determines that she can make at most 4 bundles. Do you agree with Mai’s reasoning? Explain. 

$${24+36=4(6+9)}$$

c.   If you have 18 markers and 48 pencils, what is the greatest number of bundles you can make? How many markers and pencils in each bundle? Write an equation to represent this. 

Guiding Questions

Create a free account or sign in to access the Guiding Questions for this Anchor Problem.

Student Response

Upgrade to Fishtank Plus to view Sample Response.

Problem 3

The florist can order roses in bunches of one dozen and lilies in bunches of 8. Last month she ordered the same number of roses as lilies. If she ordered no more than 100 roses, how many bunches of each could she have ordered? What is the smallest number of bunches of each that she could have ordered? Explain your reasoning.

Guiding Questions

Create a free account or sign in to access the Guiding Questions for this Anchor Problem.

Student Response

Upgrade to Fishtank Plus to view Sample Response.

References

Illustrative Mathematics The Florist Shop

The Florist Shop, accessed on Sept. 28, 2017, 4:42 p.m., is licensed by Illustrative Mathematics under either the CC BY 4.0 or CC BY-NC-SA 4.0. For further information, contact Illustrative Mathematics.

Problem Set

15-20 minutes


Give your students more opportunities to practice the skills in this lesson with a downloadable problem set aligned to the daily objective.

Target Task

5-10 minutes


Problem 1

Two numbers less than 25 have a least common multiple of 60 and a greatest common factor of 5. What are the two numbers?

Student Response

Upgrade to Fishtank Plus to view Sample Response.

Problem 2

Find the greatest common factor of the two numbers below and rewrite the sum using the distributive property.

$${20 + 36}$$

Student Response

Upgrade to Fishtank Plus to view Sample Response.

Additional Practice


The following resources include problems and activities aligned to the objective of the lesson that can be used for additional practice or to create your own problem set.

  • Include a mix of GCF and LCM word problems; a simple search for this should generate several resources on the Internet.

Lesson Map

A7CB09C2-D12F-4F55-80DB-37298FF0A765

Topic A: Dividing with Fractions

Topic B: Computing with Decimals

Topic C: Applying the Greatest Common Factor and the Least Common Multiple

Request a Demo

See all of the features of Fishtank in action and begin the conversation about adoption.

Learn more about Fishtank Learning School Adoption.

Contact Information

School Information

What courses are you interested in?

ELA

Math

Are you interested in onboarding professional learning for your teachers and instructional leaders?

Yes

No

Any other information you would like to provide about your school?

We Handle Materials So You Can Focus on Students

We Handle Materials So You Can Focus on Students

We've got you covered with rigorous, relevant, and adaptable math lesson plans for free