Students identify, perform, and algebraically describe rigid motions to establish congruence of two dimensional polygons, including triangles, and develop congruence criteria for triangles.
Math
Unit 2
10th Grade
In Unit 2, Congruence in Two Dimensions, students build off the work done in unit 1 to use rigid motions to establish congruence of two dimensional polygons, including triangles. Through a transformational lens, students develop congruence criteria for triangles that serve as the foundation for establishing relationships for right triangles and trigonometry in Unit 4. In this unit, students are also introduced to relationships with parallelograms, and this serves as a foundation for further polygon relationships in Unit 5.
In this unit, students will identify, perform, and describe transformations algebraically, using constructions both on and off the coordinate plane to justify congruence. Students will describe how the constructions used to perform the rigid motions point to the properties of the transformations, and, in some cases, indicate other transformations that are equivalent. In 8th grade, students worked with congruence through transformational geometry and learned about the interior angle sum theorem for triangles as well as the relationship between interior and exterior angles of a triangle. This understanding is formalized in this unit.
Students will learn about the criteria needed for triangle congruence, building from 7th grade, where math students learned to identify conditions that determine a unique triangle, more than one triangle, or no triangle. Students will also learn how and why these criteria exist by exploring the transformations underlying the criteria.
Because triangles make up most other polygons, examining and proving theorems about triangle congruence will help students develop the foundation needed to understand the properties and criteria for congruence of other polygons. The work of this unit is also particularly important preparation for trigonometry because trigonometry is based on triangle relationships. Developing an understanding of triangle congruence will ease students’ transition to trigonometry.
Pacing: 20 instructional days (18 lessons, 1 flex day, 1 assessment day)
The following assessments accompany Unit 2.
Use the resources below to assess student mastery of the unit content and action plan for future units.
Internalization of Standards via the Unit Assessment
Internalization of Trajectory of Unit
polygon | parallel/perpendicular | interior angles | exterior angles |
parallelogram | convex/concave | congruence | Perpendicular Bisector Theorem |
Hypotenuse Leg Congruence Criteria | property of opposite angles in parallelograms | Rotational Symmetry | Reflectional Symmetry |
Side Angle Side Congruence Criteria | Angle Side Angle Congruence Criteria | Side | Side Side Congruence Criteria |
Angle Angle Side Congruence Criteria | Base Angle of Isoceles Triangles Theorem | property of opposite sides in parallelograms | properties of diagonals in parallelograms |
Topic A: Introduction to Polygons
Topic B: Rigid Motion Congruence of Two-Dimensional Figures
Topic C: Triangle Congruence
Topic D: Parallelogram Properties from Triangle Congruence
Key
Major Cluster
Supporting Cluster
Additional Cluster
CCSS.MATH.PRACTICE.MP1 — Make sense of problems and persevere in solving them.
CCSS.MATH.PRACTICE.MP2 — Reason abstractly and quantitatively.
CCSS.MATH.PRACTICE.MP3 — Construct viable arguments and critique the reasoning of others.
CCSS.MATH.PRACTICE.MP4 — Model with mathematics.
CCSS.MATH.PRACTICE.MP5 — Use appropriate tools strategically.
CCSS.MATH.PRACTICE.MP6 — Attend to precision.
CCSS.MATH.PRACTICE.MP7 — Look for and make use of structure.
CCSS.MATH.PRACTICE.MP8 — Look for and express regularity in repeated reasoning.
Unit 1
Constructions, Proof, and Rigid Motion
Unit 3
Dilations and Similarity